Indoor location is currently the subject of intensive research.

 

The main goal of researchers is to obtain a functional system capable of locating, identifying and guiding, as precisely as possible and in real time. To date, no solution has been able to achieve a location-navigation system as precise and successful as those developed in analogous research such as outdoor location. The main characteristic of a real time positioning system is to know the precise position of an object or individual within a building, which would make it possible to develop and offer a vast set of services, most notably those that aim to control access through the identification of users, security based on physical location, and applications that pursue a statistical objective or installation management.

The main reason for not having yet achieved this milestone is primarily due to technical issues and, to a greater extent, financial reasons. A GPS system simply requires a physical device that is connected in an open space to a finite number of satellites. On the other hand, a closed space requires the use of an existing infrastructure with a large number of stationary devices that act as beacons, which results in a high cost solution.

Due to the need of improving the accuracy and reducing cost in indoor location system, the research group has developed a hybrid location system with a multi-agent system that uses electromagnetic fields and different types of sensors to track elements such as people or devices.

Specifically, the proposed system has solved the problem to estimating the probabilities of belonging to the points previously scanned in the intensity maps. The intensity maps obtained indoors are created using some parameters. Each of the them contains the information of electromagnetic fields such as: Wi-Fi, GSM, GPRS, RFID, Bluetooth, ZigBee networks scanned in that moment and identified by a coordinate (x,y). The rows can contain more or less columns depending on the scanned intensities.

The deployment of these applications tends to take place in indoor locations such as hospitals, manufacturing plants, large warehouses or even with complementary systems such as GPS (Global Positioning System).

The system may display heat maps, locate in real time users and devices and set different alarms depending on their location. In addition, the system allows detecting anomalous routes by defining graphs using the information of previous routes of users and devices.

Some applications of this technology are:

  • Locate staff in hospitals, staff of surveillance and security.
  • Locate expensive devices.
  • Guidance in shopping malls, monuments and large building.

ASSOCIATED PROJECTS

NATIONALS

GUARDIAN: Electronic System to Protect Abuse Victims in High Risk Situations

Reference: IPT- 430000-2010-035

Funding body: Ministry of Science and Innovation(Innpacto 2010)

Collaborators: Nebusens and Oesía

Principal Research: Juan Manuel Corchado

Start date: 01-06-2010    End date: 01-03-2013

Website: guardian.usal.es

 

PROJECTS WITH COMPANIES

Development and deployment location system for Bilbao Underground.

Funding body: Oesia Networks, S.L.

Collaborators: Oesia Networks, S.L.

Principal Research: Juan Manuel Corchado Rodríguez

Start date: 01-05-2014    End date: 01-06-2014

 

Posted by Juan M. Corchado

Juan Manuel Corchado (15 May 1971, Salamanca, Spain) is Professor at the University of Salamanca. He has been Vice-Rector for Research from 2013 to 2017 and Director of the Science Park of the University of Salamanca. Elected as Dean of the Faculty of Science twice, he holds a PhD in Computer Science from the University of Salamanca and a PhD in Artificial Intelligence from the University of the West of Scotland. He leads the renowned BISITE (Bioinformatics, Intelligent Systems and Educational Technology) Research Group, created in 2000. Director of the IoT Digital Innovation Hub and President of the AIR Institute, J. M. Corchado is also Visiting Professor at the Osaka Institute of Technology since January 2015, Visiting Professor at the Universiti Malaysia Kelantan and Member of the Advisory Group on Online Terrorist Propaganda of the European Counter Terrorism Centre (EUROPOL). J. M. Corchado has been president of the IEEE Systems, Man and Cybernetics Society, and academic coordinator of the University Institute for Research in Art and Animation Technology at the University of Salamanca, as well as researcher at the Universities of Paisley (UK), Vigo (Spain) and the Plymouth Marine Laboratory (UK). He currently combines all his activity with the direction of Master programmes in Security, Digital Animation, Mobile Telephony, Information Systems Management, Internet of Things, Social Media, 3D Design and Printing, Blockchain, Z System, Industry 4.0, Agile Project Management, and Smart Cities & Intelligent Buildings, at the University of Salamanca and his work as editor-in-chief of the journals ADCAIJ (Advances in Distributed Computing and Artificial Intelligence Journal), OJCST (Oriental Journal of Computer Science and Technology) or Electronics MDPI (Computer Science & Engineering section). J. M. Corchado mainly works on projects related to Artificial Intelligence, Machine Learning, Blockchain, IoT, Fog Computing, Edge Computing, Smart Cities, Smart Grids and Sentiment Analysis. He has recently been included in the board of trustees of the AstraZeneca Foundation, along with other health professionals and researchers recognised for bringing scientific knowledge closer to society.

Thanks for your comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.