Researchers from the Genetics area of the University of Salamanca together with several research groups from universities in the US, Australia, Mexico and the University of Seville have characterized the genmadC of the fungus Phycomyces blakesleeanus. This work has just been published in the journal Scientific Reports.

The USAL group (Catalina Sanz, Mahdi Shahriari and Arturo Pérez Eslava), together with the previous groups, had already characterized two genes, madA (Idnurm et al., PNAS 2006) and madB (Sanz et al., PNAS 2009) . Its gene products are photoreceptors and therefore act at the beginning of the path of sensory transduction that goes from the reception of light to the making of response mechanisms. The product of the madC gene was also thought to be part of the beginning of this path, i.e. that it also affected photoreception. However, according to the article published in Scientific Reports, it was observed that madC codes for a RAS-GAP protein belonging to the RAS protein family. These proteins, once activated, stimulate many signal transmission pathways that affect cell proliferation, differentiation, development, etc.

This work demonstrates that the altered phototropism of the madC mutants is not due to defects in the reception of light per se, but to events located downstream in the transmission path of light signals.
Experiments complementing the madC gene in other fungi have shown that this gene also affects the circadian rhythm.

In summary, this work has shown that the product of the madC gene is part of the RAS signaling pathway and that the encoding protein (RAS-GAP) has to do with both phototropism and with the circadian rhythm in fungi. The loss of function of a RAS-GAP homolog in the vinegar fly (Drosophila melanogaster) also produces abnormalities in its circadian rhythm. Similarly, the homologous gene in humans (NF1) is also capable of replacing the mutations in the circadian rhythm detected in the yeast Saccharomyces cerevisiae.

 

ORIGINAL ARTICLE.

Polaino, S. et al. A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Sci. Rep. 7, 44790; doi: 10.1038/srep44790 (2017). http://www.nature.com/articles/srep44790#supplementary-information

Posted by Juan M. Corchado

Juan Manuel Corchado (15 May 1971, Salamanca, Spain) is Professor at the University of Salamanca. He has been Vice-Rector for Research from 2013 to 2017 and Director of the Science Park of the University of Salamanca. Elected as Dean of the Faculty of Science twice, he holds a PhD in Computer Science from the University of Salamanca and a PhD in Artificial Intelligence from the University of the West of Scotland. He leads the renowned BISITE (Bioinformatics, Intelligent Systems and Educational Technology) Research Group, created in 2000. Director of the IoT Digital Innovation Hub and President of the AIR Institute, J. M. Corchado is also Visiting Professor at the Osaka Institute of Technology since January 2015, Visiting Professor at the Universiti Malaysia Kelantan and Member of the Advisory Group on Online Terrorist Propaganda of the European Counter Terrorism Centre (EUROPOL). J. M. Corchado has been president of the IEEE Systems, Man and Cybernetics Society, and academic coordinator of the University Institute for Research in Art and Animation Technology at the University of Salamanca, as well as researcher at the Universities of Paisley (UK), Vigo (Spain) and the Plymouth Marine Laboratory (UK). He currently combines all his activity with the direction of Master programmes in Security, Digital Animation, Mobile Telephony, Information Systems Management, Internet of Things, Social Media, 3D Design and Printing, Blockchain, Z System, Industry 4.0, Agile Project Management, and Smart Cities & Intelligent Buildings, at the University of Salamanca and his work as editor-in-chief of the journals ADCAIJ (Advances in Distributed Computing and Artificial Intelligence Journal), OJCST (Oriental Journal of Computer Science and Technology) or Electronics MDPI (Computer Science & Engineering section). J. M. Corchado mainly works on projects related to Artificial Intelligence, Machine Learning, Blockchain, IoT, Fog Computing, Edge Computing, Smart Cities, Smart Grids and Sentiment Analysis. He has recently been included in the board of trustees of the AstraZeneca Foundation, along with other health professionals and researchers recognised for bringing scientific knowledge closer to society.

Thanks for your comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.